Jag har läst den diskussion du nämnde. Den är tillämplig på PostgreSQL eftersom det är tillåtet att skapa användardefinierad aggregatfunktion med SQL i PostgreSQL, men inte tillåtet i SQL Server. Användning av rekursiv CTE är ett genomförbart sätt i SQL Server, men jag märker att CTE Sätt kan leda till mer bordssökning än fönsterfunktioner Så jag gör det här inlägget för att fråga om det är möjligt att beräkna exponentiell glidande medelvärde genom att använda SQL Server 2012-fönsterfunktionen precis som att beräkna enkelt glidande medelvärde xiagao1982 14 april kl 2 13. Först beräknar du EMA SMA x istället för EMA x För det andra är din utjämningskonstant faktiskt beta-värdet i min formel, inte alfabetet. Med dessa två ändringar ser SQLFiddle ut så här. Det finns dock fortfarande en liten skillnad mellan det faktiska resultatet och det förväntade resultatet Jag skulle gå tillbaka och se om deras EMA-definition matchar den jag känner Sebastian Meine 7 maj 13 på 13 46. Jag tittade bara på formuläret i kalkylbladet du bifogade och det är långt ifrån standarden EMA-definition Min formel beräknar exponentiellt rörligt medelvärde för de senaste tio raderna Kalkylbladet beräknar först standardvärdet under de senaste tio raderna och sedan det obegränsade exponentiellt vägda glidande medeltalet över alla medeltal. Detta följer formuläret här Sebastian Meine 7 maj kl 13 . Exploderande Exponentiellt Vägt Flyttande Average. Volatility är det vanligaste måttet på risk, men det kommer i flera smaker. I en tidigare artikel visade vi hur man beräknar enkel historisk volatilitet. För att läsa denna artikel, se Använd volatilitet för att mäta framtida risk Vi använde Googles faktiska aktiekursdata för att beräkna den dagliga volatiliteten baserat på 30 dygns lagerdata I den här artikeln kommer vi att förbättra den enkla volatiliteten och diskutera det exponentiellt viktade glidande medlet EWMA Historical Vs Implied Volatility Först låt oss sätta denna mätvärde i en Lite perspektiv Det finns två breda tillvägagångssätt historiska och underförstådda eller implicita volatiliteter Det historiska tillvägagångssättet a Ssumes det förflutna är prolog vi mäter historia i hopp om att det är förutsägbart Implicerat volatilitet å andra sidan ignorerar historien den löser för volatiliteten implicerad av marknadspriserna Det hoppas att marknaden vet bäst och att marknadspriset innehåller, även om Implicit en konsensusuppskattning av volatilitet För relaterad läsning, se Användning och gränser för volatilitet. Om vi fokuserar på bara de tre historiska tillvägagångssätten till vänster ovan, har de två steg gemensamt. Beräkna serien av periodiska avkastningar. Använd en viktning Först beräknar vi den periodiska avkastningen Det är vanligtvis en serie av dagliga avkastningar där varje avkastning uttrycks i kontinuerligt förhöjda termer. För varje dag tar vi den naturliga loggen av förhållandet mellan aktiekurserna, dvs priset idag dividerat med priset igår och Så vidare. Detta producerar en serie dagliga avkastningar, från u till du im beroende på hur många dagar m dagar vi mäter. Det tar oss till det andra steget. Här är de tre metoderna olika. I t Han tidigare artikel med hjälp av volatilitet för att mäta framtida risk visade vi att enligt enkla acceptabla förenklingar är den enkla variansen genomsnittet av den kvadrerade avkastningen. Notera att detta summerar var och en av den periodiska avkastningen och delar sedan den totala med antalet dagar Eller observationer m Så det är egentligen bara ett medelvärde av den kvadratiska periodiska avkastningen. Sätt på ett annat sätt, varje kvadrerad retur får lika vikt. Om alfa a är en viktningsfaktor specifikt, en 1 m, ser en enkel varians något ut så här . EWMA förbättras på enkel varians Svagheten i detta tillvägagångssätt är att alla avkastningar tjänar samma vikt igår s mycket nyårig avkastning har inte mer inflytande på variansen än i föregående månad s återkomst Detta problem fixas med hjälp av exponentiellt vägt glidande medelvärdet EWMA, I vilken nyare avkastning har större vikt på variansen. Exponentiellt vägt rörligt medelvärde EWMA introducerar lambda som kallas utjämningsparametern Lambda måste vara mindre Än ett Under detta förhållande, i stället för lika vikter, vägs varje kvadrerad avkastning med en multiplikator enligt följande. Exempelvis brukar RiskMetrics TM, ett finansiellt riskhanteringsföretag, använda en lambda på 0 94 eller 94 i detta fall Den första kvadratiska periodiska avkastningen vägs med 1-0 94 94 0 6 Nästa kvadrerade retur är helt enkelt en lambda-multipel av den tidigare vikten i detta fall 6 multiplicerat med 94 5 64 och den tredje föregående dagen s vikten är lika med 1-0 94 0 94 2 5 30.Det är betydelsen av exponentiell i EWMA varje vikt är en konstant multiplikator, dvs lambda, som måste vara mindre än en av föregående dags vikt. Detta säkerställer en varians som är viktad eller förspänd mot senare data till Läs mer, kolla in Excel-kalkylbladet för Google s volatilitet Skillnaden mellan helt enkelt volatilitet och EWMA för Google visas nedan. Enkel volatilitet väger väsentligen varje periodisk avkastning med 0 196, vilket visas i kolumn O vi hade två års daglig aktiekurs Data Det är 509 dagligen Returnerar och 1 509 0 196 Men märke att kolumn P tilldelar en vikt av 6, sedan 5 64, sedan 5 3 och så vidare Det är den enda skillnaden mellan enkel varians och EWMA. Remember När vi summerar hela serien i kolumn Q har vi Variansen, som är kvadraten av standardavvikelsen Om vi vill ha volatilitet, måste vi komma ihåg att ta kvadratroten av den variansen. Vad är skillnaden i den dagliga volatiliteten mellan variansen och EWMA i Google s-fallet Det är viktigt Det enkla Varians gav oss en daglig volatilitet på 2 4 men EWMA gav en daglig volatilitet på endast 1 4 se kalkylbladet för detaljer. Uppenbarligen sänkte Googles volatilitet mer nyligen, därför kan en enkel varians vara artificiellt hög. För närvarande är variansen en funktion Av Pior Day s Variance Du kommer märka att vi behövde beräkna en lång serie exponentiellt sjunkande vikter Vi vann inte matematiken här, men en av EWMA: s bästa egenskaper är att hela serien reduceras bekvämt till en rekursiv formel. Recursiv innebär att dagens variansreferenser, dvs. Är en funktion av förevarande dags varians. Du kan även hitta denna formel i kalkylbladet och det ger exakt samma resultat som longhandberäkningen. Det står idag att varians under EWMA motsvarar igårens varians Viktad av lambda plus gårdagens kvadrerade returväg vägd av en minus lambda Observera hur vi bara lägger till två termer tillsammans igår s viktad varians och gårdagarna viktad, kvadrerad retur. Ännu så är lambda vår utjämningsparametrar En högre lambda t. ex. som RiskMetric s 94 indikerar Långsammare förfall i serien - relativt sett kommer vi att ha fler datapunkter i serien och de kommer att falla av långsammare. Å andra sidan, om vi reducerar lambda, indikerar vi högre sönderfall, vikterna faller av mer Snabbt och som ett direkt resultat av det snabba förfallet används färre datapunkter I kalkylbladet är lambda en ingång, så att du kan experimentera med sin känslighet. Summa volatilitet är insta Netto standardavvikelse för ett lager och den vanligaste riskvärdet Det är också kvadratroten av variansen Vi kan mäta variansen historiskt eller implicit implicerad volatilitet Vid mätning historiskt är den enklaste metoden enkel varians Men svagheten med enkel varians är allt avkastning få Samma vikt Så vi står inför en klassisk avvägning vi vill alltid ha mer data, men ju mer data vi har desto mer beräknas vår beräkning utspädd med avlägsna mindre relevanta uppgifter. Det exponentiellt viktade glidande genomsnittet EWMA förbättras på enkel varians genom att tilldela vikter till periodisk avkastning Av Gör detta, vi kan båda använda en stor samplingsstorlek men ge också större vikt till nyare avkastningar. För att se en filmhandledning om detta ämne, besök Bionic Turtle. En undersökning som gjorts av Förenta staternas presidium för arbetsstatistik för att hjälpa till att mäta lediga platser. Det samlar in data från arbetsgivare. Det maximala beloppet av pengar som Förenta staterna kan låna. Skapad enligt Second Liberty Bond Act. Räntan vid vilken ett förvaringsinstitut lånar medel som förvaras i Federal Reserve till ett annat förvaringsinstitut.1 En statistisk mått på spridning av avkastning för ett visst värdepapper eller marknadsindex Volatilitet kan antingen mätas. En handling som den amerikanska kongressen passerade 1933 som Banking Act, som förbjöd kommersiella banker att delta i investeringen. Nonfarm lön hänvisar till något jobb utanför gårdar, privata hushåll och nonprofit sektorn US Bureau of Labor. Moving genomsnittlig och exponentiell utjämning Modeller. Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga promenadmodeller och linjära trendmodeller, nonseasonal mönster och trender vara extrapoäng Lerat med hjälp av en rörlig genomsnitts - eller utjämningsmodell Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt lokalt medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det Som prognos för den närmaste framtiden Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-without-drift-modellen Samma strategi kan användas för att uppskatta och extrapolera en lokal trend Ett glidande medel kallas ofta en jämn Version av den ursprungliga serien, eftersom kortsiktiga medelvärden medför att utjämning av stötarna i originalserien Genom att justera graden av utjämning av bredden på glidande medelvärde kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos Genomsnittliga och slumpmässiga promenadmodeller Den enklaste typen av medelvärdesmodell är det enkla lika viktade rörliga genomsnittet. Prognosen för värdet av Y vid tiden t 1 som är gjord vid tiden t är lika med s Genomföra medelvärdet av de senaste m-observationerna. Här och någon annanstans kommer jag att använda symbolen Y-hat för att stå för en prognos för tidsserien Y som gjorts så tidigt som möjligt före en given modell. Detta medel är centrerat vid period-m 1 2, vilket innebär att uppskattningen av Den lokala medelvärdet tenderar att ligga bakom det verkliga värdet av det lokala medelvärdet med ca m 1 2 perioder Således säger vi att medeltal för data i det enkla glidande medlet är m 1 2 i förhållande till den period för vilken prognosen beräknas Det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data. Om du till exempel medger de senaste 5 värdena kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m 1, Den enkla glidande SMA-modellen motsvarar den slumpmässiga promenadmodellen utan tillväxt Om m är mycket stor jämförbar med längden av uppskattningsperioden är SMA-modellen lika med medelmodellen. Som med vilken parameter som helst av en prognosmodell är det vanligt Att justera värdet av ki N för att få den bästa passformen till data, det vill säga de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar uppvisa slumpmässiga fluktuationer runt ett långsamt varierande medel. Låt oss försöka passa det med en slumpmässig promenad Modellen, vilket motsvarar ett enkelt glidande medelvärde av 1 term. Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer det mycket av bruset i dataen de slumpmässiga fluktuationerna samt signalen den lokala Medelvärde Om vi istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser. Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i detta fall Medelåldern för data i detta Prognosen är 3 5 1 2, så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare. Notera att den långsiktiga Termiska prognoser från SMA mod El är en horisontell rak linje, precis som i den slumpmässiga promenadmodellen. Således antar SMA-modellen att det inte finns någon trend i data. Men prognoserna från slumpmässig promenadmodell är helt enkelt lika med det sista observerade värdet, prognoserna från SMA-modellen är lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla rörliga genomsnittet blir inte större, eftersom prognostiseringshorisonten ökar. Detta är uppenbarligen inte korrekt. Tyvärr finns ingen underliggande Statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är emellertid inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognoserna för längre horisont. Till exempel kan du skapa ett kalkylblad där SMA-modellen Skulle användas för att prognostisera två steg framåt, 3 steg framåt, etc inom det historiska dataprovet. Du kan sedan beräkna provstandardavvikelserna för fel vid varje prognos h Orizon och konstruera sedan konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar av lämplig standardavvikelse. Om vi försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt. Medelåldern är Nu 5 perioder 9 1 2 Om vi tar ett 19-årigt glidande medelvärde, ökar medeltiden till 10. Notera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, även med ett 3-årigt genomsnitt. Modell C, det 5-åriga glidande genomsnittet, ger det lägsta värdet av RMSE med en liten marginal över de tre och 9-siktiga genomsnitten, och Deras andra statistik är nästan identiska Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer lyhördhet eller lite mer jämnhet i prognoserna. Tillbaka till början av sidan. Brons s Exponentiell utjämning exponentiellt vägd Glidande medelvärdet. Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer Intuitivt bör tidigare data diskonteras mer gradvis - till exempel bör den senaste observationen Få lite mer vikt än 2: a senast och 2: a senast bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämning SES-modellen åstadkommer detta. Låt beteckna en utjämningskonstant ett tal mellan 0 och 1 Ett sätt att skriva modellen är att definiera en serie L som representerar den aktuella nivån, dvs det lokala medelvärdet av serien som uppskattat från data upp till idag. Värdet av L vid tid t beräknas rekursivt från sitt eget tidigare värde som detta. Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där kontrollen av det interpolerade värdet är så nära som möjligt Cent observation Prognosen för nästa period är helt enkelt det nuvarande utjämnade värdet. Evivalent kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner I den första versionen är prognosen en interpolering Mellan föregående prognos och tidigare observation. I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel. Erroren vid tidpunkten t I den tredje versionen är prognosen en Exponentiellt viktad dvs diskonterat glidande medelvärde med rabattfaktor 1.Interpoleringsversionen av prognosformuläret är det enklaste att använda om du implementerar modellen på ett kalkylblad som passar i en enda cell och innehåller cellreferenser som pekar på föregående prognos, föregående Observation och cellen där värdet av lagras. Notera att om 1, motsvarar SES-modellen en slumpmässig promenadmodell wit Träväxt Om 0 är SES-modellen ekvivalent med medelmodellen, förutsatt att det första släta värdet sätts lika med medelvärdet Return to top of the page. Den genomsnittliga åldern för data i prognosen för enkel exponentiell utjämning är 1 relativ Till den period för vilken prognosen beräknas. Detta är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie. Därför tenderar den enkla glidande genomsnittliga prognosen att ligga bakom vändpunkter med ca 1 period. Till exempel när 0 5 fördröjningen är 2 perioder när 0 2 fördröjningen är 5 perioder då 0 1 fördröjningen är 10 perioder och så vidare. För en given medelålder, dvs mängden fördröjning, är den enkla exponentiella utjämning SES-prognosen något överlägsen den enkla rörelsen Genomsnittlig SMA-prognos eftersom den lägger relativt större vikt vid den senaste observationen - det är något mer responsivt på förändringar som inträffade under det senaste. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 0 2 båda en genomsnittlig ålder Av 5 för da Ta i sina prognoser, men SES-modellen lägger mer vikt på de senaste 3 värdena än SMA-modellen och samtidigt glömmer det inte helt värderingar som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som är kontinuerligt variabel så att den enkelt kan optimeras genom att använda en solveralgoritm för att minimera medelkvadratfelet. Det optimala värdet av SES-modellen för denna serie visar sig Att vara 0 2961, som visas här. Medelåldern för data i denna prognos är 1 0 2961 3 4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är En horisontell rak linje som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt Men notera att de konfidensintervaller som beräknas av Statgraphics nu avviker på ett rimligt sätt och att de är väsentligt smalare än förtroendeintervallet för rand Om walk-modellen SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell, så den statistiska teorin om ARIMA-modeller ger en bra grund för att beräkna konfidensintervaller för SES-modell SES-modellen är speciellt en ARIMA-modell med en icke-säsongsskillnad, en MA 1-term och ingen konstant term som annars kallas en ARIMA 0,1,1-modell utan konstant MA1-koefficienten i ARIMA-modellen motsvarar Kvantitet 1- i SES-modellen Om du till exempel passar en ARIMA 0,1,1-modell utan konstant till den analyserade serien, visar den uppskattade MA 1-koefficienten sig på 0 7029, vilket är nästan exakt en minus 0 2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. Ange härmed bara en ARIMA-modell med en icke-säsongsskillnad och en MA 1-term med en konstant, dvs en ARIMA 0,1,1-modell Med konstant De långsiktiga prognoserna kommer att Då har en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant lång Termisk exponentialutveckling till en enkel exponentiell utjämningsmodell med eller utan säsongjustering genom att använda inflationsjusteringsalternativet i prognostiseringsförfarandet. Den lämpliga inflationsprocenttillväxten per period kan uppskattas som lutningskoefficienten i en linjär trendmodell monterad på data i Samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter. Tillbaka till början av sidan. Brett s Linjär dvs dubbel exponentiell utjämning. SMA-modellerna och SES-modellerna antar att det inte finns någon trend av Vilken typ som helst i de data som vanligtvis är ok eller åtminstone inte för dålig för 1-stegs prognoser när data är relativt noi Sy och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en varierande tillväxthastighet eller ett cykliskt mönster som står klart mot bruset och om det finns behov av att Prognos mer än 1 år framåt, kan uppskattning av en lokal trend också vara ett problem. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning av LES-modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trenden Modellen är Brown s linjär exponentiell utjämningsmodell, som använder två olika släta serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centren. En mer sofistikerad version av denna modell, Holt s, är Diskuteras nedan. Den algebraiska formen av Browns linjära exponentiella utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men e Kvivalenta former Standardformen för denna modell uttrycks vanligtvis enligt följande. Låt S beteckna den singelformade serien som erhållits genom att applicera enkel exponentiell utjämning till serie Y Det är värdet av S vid period t ges av. Minns att under enkel exponentiell utjämning skulle detta vara prognosen för Y vid period t 1 Låt sedan S beteckna den dubbelsidiga serien som erhållits genom att applicera enkel exponentiell utjämning med samma till serie S. Slutligen är prognosen för Y tk för vilken som helst K 1, ges av. Detta ger e 1 0, dvs lurar lite och låt den första prognosen motsvara den faktiska första observationen och e 2 Y 2 Y 1, varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden Som formel baserad på S och S om den senare startades med användning av S 1 S 1 Y 1 Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Helt s linjär exponentiell utjämning. S LES-modellen beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på datamönstren att den kan passa nivån och trenden får inte variera vid Oberoende priser Holt s LES-modellen tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst t, som i Brown s-modellen, finns det en uppskattning L t på lokal nivå och en uppskattning T T av den lokala trenden Här beräknas de rekursivt från värdet av Y observerat vid tid t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som tillämpar exponentiell utjämning åt dem separat. Om den beräknade nivån och trenden vid tiden t-1 Är L t 1 och T t-1, då skulle prognosen för Y t som skulle ha gjorts vid tid t-1 vara lika med L t-1 T t 1 När det verkliga värdet observeras, är den uppdaterade uppskattningen av Nivån beräknas rekursivt genom att interpolera mellan Yt och dess prognos, L t-1 T t-1, med vikter av och 1. Förändringen i beräknad nivå, nämligen L t L t 1 kan tolkas som en bullrig mätning av Trenden vid tiden t Den uppdaterade uppskattningen av trenden beräknas därefter rekursivt genom interpolering mellan L T L t 1 och den tidigare uppskattningen av trenden, T t-1 med vikter av och 1.Tolkningen av trendutjämningskonstanten är analog med den för nivåutjämningskonstanten. Modeller med små värden antar att trenden förändras Bara mycket långsamt över tiden medan modeller med större antar att det förändras snabbare En modell med en stor tror att den avlägsna framtiden är väldigt osäker eftersom fel i trendberäkning blir ganska viktiga när prognoser mer än en period framåt. Av sidan. Utjämningskonstanterna och kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 0 3048 och 0 008 Det mycket lilla värdet av Innebär att modellen antar mycket liten förändring i trenden från en period till en annan, så i princip försöker denna modell uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används vid uppskattning av t Han lokal nivå av serien, den genomsnittliga åldern för de data som används för att uppskatta den lokala trenden är proportionell mot 1, men inte exakt lika med det i det här fallet visar sig vara 1 0 006 125 Detta är inte mycket exakt nummer Eftersom beräkningsnoggrannheten inte är riktigt 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medelvärdesberäknad över ganska mycket historia vid bedömning av trenden. Prognosplotten Nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som uppskattas i SES-trendmodellen. Det uppskattade värdet är nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend , Så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du eyeball denna plot ser det ut som om den lokala trenden har vänt sig nedåt i slutet av Serie Wh Vid har hänt Parametrarna för denna modell har uppskattats genom att minimera kvadreringsfelet i 1-stegs prognoser, inte längre prognoser, i vilket fall trenden inte gör stor skillnad. Om allt du tittar på är 1 - steg framåtfel, ser du inte den större bilden av trender över säga 10 eller 20 perioder För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den Använder en kortare baslinje för trenduppskattning. Om vi exempelvis väljer att ställa in 0 1, är medelåldern för de data som används för att uppskatta den lokala trenden 10 perioder, vilket innebär att vi medeltar trenden under de senaste 20 perioderna eller så Här är vad prognosplottet ser ut om vi ställer in 0 1 samtidigt som vi håller 0 3 Det ser intuitivt rimligt ut för den här serien, men det är förmodligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad med felstatistik Här är En modell jämförelse f Eller de två modellerna som visas ovan samt tre SES-modeller. Det optimala värdet på SES-modellen är ungefär 0 3, men liknande resultat med något mer eller mindre responsivitet erhålls med 0 5 och 0 2. En Holt s linjär expo-utjämning Med alfa 0 3048 och beta 0 008. B Holt s linjär expjäkning med alfa 0 3 och beta 0 1. C Enkel exponentiell utjämning med alfa 0 5. D Enkel exponentiell utjämning med alfa 0 3. E Enkel exponentiell utjämning med alfa 0 2.De statistik är nästan identiska så vi kan verkligen inte göra valet på grundval av 1-stegs prognosfel inom dataprovet. Vi måste falla tillbaka på andra överväganden. Om vi starkt tror att det är vettigt att basera strömmen Trendberäkning om vad som hänt under de senaste 20 perioderna eller så kan vi göra ett fall för LES-modellen med 0 3 och 0 1 Om vi vill vara agnostiker om det finns en lokal trend, kan en av SES-modellerna Vara lättare att förklara och skulle också ge mer medel E-of-the-road prognoser för de kommande 5 eller 10 perioderna Gå tillbaka till toppen av sidan. Vilken typ av trend-extrapolation är bäst horisontellt eller linjärt. Empiriska bevis tyder på att om uppgifterna redan har justerats om det behövs för inflationen, då Det kan vara oskäligt att extrapolera kortsiktiga linjära trender långt in i framtiden. Trenden som uppenbaras idag kan slakta i framtiden på grund av olika orsaker som produktförstöring, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Därför är det enkelt exponentiellt Utjämning utförs ofta bättre utom provet än vad som annars skulle kunna förväntas trots sin naiva horisontella trend-extrapolering. Dämpade trendändringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den dämpade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA 1,1,2-modell. Det är möjligt att beräkna konfidensintervall arou Nd långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller Var försiktig att inte alla mjukvaror beräknar konfidensintervaller för dessa modeller korrekt. Bredden på konfidensintervallet beror på jag RMS-felet i modellen, ii typen Av utjämning enkel eller linjär iii värdet s av utjämningskonstanten s och iv antalet framåtprognoser du prognoserar Generellt sprids intervallerna snabbare och blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel Utjämning används Detta avsnitt diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. Gå tillbaka till början av sidan.
Comments
Post a Comment